3(-10)+10+y^2=180

Simple and best practice solution for 3(-10)+10+y^2=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(-10)+10+y^2=180 equation:



3(-10)+10+y^2=180
We move all terms to the left:
3(-10)+10+y^2-(180)=0
determiningTheFunctionDomain y^2+10-180+3(-10)=0
We add all the numbers together, and all the variables
y^2-200=0
a = 1; b = 0; c = -200;
Δ = b2-4ac
Δ = 02-4·1·(-200)
Δ = 800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{800}=\sqrt{400*2}=\sqrt{400}*\sqrt{2}=20\sqrt{2}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{2}}{2*1}=\frac{0-20\sqrt{2}}{2} =-\frac{20\sqrt{2}}{2} =-10\sqrt{2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{2}}{2*1}=\frac{0+20\sqrt{2}}{2} =\frac{20\sqrt{2}}{2} =10\sqrt{2} $

See similar equations:

| F(x)=1.50+2.00 | | 4(x-8)=3x+7 | | 5n=535 | | 2w=276 | | 5x+x+8=127 | | 2x(3x-1)=2x | | 21f=714 | | r/24=5 | | 2(x+7)-7=2x+7= | | -3+5/2x=-5 | | 8x+10=−3x−16 | | 2/x-5=-3 | | (2+7i)+(5-4i)=0 | | j2−33=–24 | | 99+y=100 | | 72=-4(-2w-4) | | 9x+(-5)+(-8x)+10=0 | | 3+2(4x-1)=18+6x-19 | | 106+44+x=180 | | 4x+17+80=x+23 | | 20=2x-8x | | t2−81=0 | | -1.9=(-0.1q+4.9) | | 3x²+46x-22=10 | | X-y=82 | | 6x-x=40+10 | | -2(x+(-7))+3(x-3)=0 | | 3x^2+46x-22=10 | | -6+3x-5=1 | | X+6×x40=0 | | 5x=35+4.25x | | q2=100 |

Equations solver categories